Соотношение периметра и площади прямоугольника

Периметр прямоугольника — формулы или способы расчетов

Началом пропедевтики изучения геометрии являются знания, которые учащиеся получают, переходя во 2 класс. Применяя правила умножения, здесь впервые вычисляют периметр прямоугольника.

Переходя в следующий, 3 класс, школьники на основе этой формулы начинают знакомиться с правилами раскрытия скобок.

Как вычислить периметр прямоугольника

Учитывая, что периметр любой фигуры есть сумма длин её сторон, выводят две формы записи для нахождения этой величины.

Периметр прямоугольника

В прямоугольнике противоположные стороны равны, поэтому, обозначив смежные стороны a и b, получают по определению:

откуда после приведения подобных слагаемых, вытекает формула

или, вынося двойку за скобки,

Рассматривая квадрат, как прямоугольник с равными сторонами, получают формулу его периметра:

Формула нахождения периметра прямоугольника

Способ вычисления нужно выбрать, отталкиваясь от исходных данных. Далее рассмотрим четыре классические формулы.

Можно ли найти площадь из периметра?

Замечание для любознательных. В случае с прямоугольником, у которого задан периметр, максимальную площадь будет иметь квадрат.

Стандартный метод

В зависимости от сложности вычислений, применяют одну из формул, чтобы высчитать периметр. Учащиеся начальной школы знакомятся с понятием, сталкиваясь с практическими задачами.

Задача

Найти длину забора участка прямоугольной формы, который надо построить Сидору Карловичу, если общая граница с участком Ивана Петровича составляет 3 метра, а с плантацией Марии Ивановны – 5 метров.

70347

Решение

Чтобы решить задачу и помочь незадачливому Сидору Карловичу, ученику приходится использовать формулу периметра прямоугольника. Учитывая, что a = 3, b = 5, дети легко находят, что длина забора равна

P = 2 (a + b) = 2 * (3 + 5) = 2 * 8 = 16 (метров)

Важные требования, предъявляемые к ученикам на данном этапе изучения материала, заключаются в правильном соизмерении длины и ширины, а также в умении начертить фигуру.

Работа выполняется только при одинаковых единицах измерения, все чертежи делаются строго с использованием инструментов!

Часто длина заданного отрезка измеряется непосредственно.

По стороне и диаметру описанной окружности

Вокруг любого прямоугольника можно описать окружность. Вам надо знать диаметр этой окружности и любую из сторон прямоугольника.

  1. Найдите квадрат диаметра – умножьте диаметр на диаметр.
  2. Найдите квадрат известной стороны.
  3. Отнимите от квадрата диаметра квадрат стороны.
  4. Найдите квадратный корень разности.
  5. Умножьте квадратный корень на известную сторону.

По одной стороне и диаметру окружности

Пример. Найдите площадь прямоугольника, если диаметр описанной окружности равен 10 см, а одна из сторон равна 8 см.

  1. Квадрат диаметра: 10*10 = 100 см.
  2. Квадрат стороны: 8*8 = 64 см.
  3. Отнимаю от квадрата диаметра квадрат стороны: 100-64 = 36 см.
  4. Квадратный корень из 36 равен 6 см (потому что 6*6 = 36).
  5. Умножаю сторону на корень из разности: 8*6 = 48 см.

Диагональ равна диаметру

Лайфхак

Диаметр описанной окружности всегда равен диагонали прямоугольника. Смотрите:

А найти диагональ можно по формуле гипотенузы прямоугольного треугольника.

Диаметр равен двум радиусам, потому что радиус – это половина диаметра.

Как найти площадь треугольника – все способы

Когда известны все или две соседние стороны

P = a + b + c + d, где a, b, c, d — стороны.

Формула площади прямоугольника через периметр

Если известна длина только одной стороны, но известен еще и периметр прямоугольника.

В этом случае есть два варианта.

    Первый — вычислить длину второй стороны. Для этого надо вспомнить, что периметр (обозначается буквой «Р») считается по формуле:

Длина стороны

И тогда обратные расчеты выглядят вот так:

Расчет

Готовая формула

Задача 3. Найти площадь прямоугольника из пропорции его сторон

Найти площадь прямоугольника если его периметр равен 26 см а стороны пропорциональны как 2 к 3.

Решение.
Обозначим стороны прямоугольника через коэффициент пропорциональности x.
Откуда длина одной стороны будет равна 2x, другой – 3х.

Тогда:
2(2x+3x)=26
2x+3x=13
5x=13
x=13/5
Теперь, исходя из полученных данных, определим площадь прямоугольника:
2x*3x=2*13/5*3*13/5=40,56 см 2

Нахождение периметра через площадь и одну сторону

При более близком знакомстве с прямоугольником, способы нахождения его периметра начинают варьироваться в зависимости от исходных данных в задаче.

21-1

Если известны одна из сторон и площадь, то, чтобы узнать, чему равен периметр, выражается неизвестная сторона, а затем она подставляется в формулу.

405

то есть, соотношение площади и периметра при известной стороне есть

406

Вместо заключения

Зная длины сторон, можно вычислять и периметры более сложных прямоугольных фигур. Вот таких:

Вычисление

Страшно выглядят они только на первый взгляд. А на деле, надо просто провести недостающую линию и разделить каждую из фигур на два прямоугольника. Далее вычисляем их периметры по отдельности и складываем друг с другом. Как результат – общий периметр фигуры.

Вот и все, что мы хотели сегодня рассказать.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (2)

Периметр прямоугольника найти просто, а вот со всякими сложными фигурами, у которых стороны криволинейные, вот тут с нахождением правильного решения замучаешься.

Вот это я сейчас в школьную программу геометрии вернулся! На самом деле тема-то легкая, но когда читаешь объяснения, то вообще не сразу понимаешь что к чему.

Задача 4. Изменение длины сторон при сохранении площади прямоугольника

Длина прямоугольника увеличена на 25%. На сколько процентов надо уменьшить ширину, чтобы его площадь не изменилась?

Решение.
Площадь прямоугольника равна
S = ab

В нашем случае один из множителей увеличился на 25%, что означает a2 = 1,25a . Таким образом, новая площадь прямоугольника должна быть равна
S2 = 1,25ab

Таким образом, для того, чтобы вернуть площадь прямоугольника к начальному значению, то
S2 = S / 1.25
S2 = 1,25ab / 1.25

поскольку новый размер а изменять нельзя, то
S2 = (1,25a) b / 1.25

1 / 1,25 = 0,8
Таким образом, величину второй стороны нужно уменьшить на ( 1 – 0,8 ) * 100% = 20%

По стороне и периметру – 1 способ

Периметр – это сумма всех сторон прямоугольника. P=a+b+a+b. Другая формула периметра: P=2(a+b).

Если известен периметр и одна сторона, надо найти вторую сторону и перемножить их.

Пример. Периметр прямоугольника равен 14 см, а одна из сторон равна 3 см. Найдите площадь.

  1. Нахожу вторую сторону прямоугольника:
    1. P=2(a+b).
    2. P=2a+2b.
    3. 14= 2*3+2b.
    4. 14 = 6+2b.
    5. 2b = 14-6 = 8.
    6. b = 8/2.
    7. b = 4.

    Когда известна любая сторона и диагональ

    P = 2 * (a + √(d 2 – а 2 )), где a — сторона, d — диагональ.

    Диагональ — это отрезок, который соединяет противоположные стороны фигуры.

    Периметр круга (длина окружности)

    Каждый круг имеет центр. Расстояние от центра круга до любой точки, расположенной на окружности, имеет название радиус круга. Часто ученики путают понятия «круг» и «окружность» и пытаются определить площадь окружности. Это серьезная ошибка. Следует разделить в голове понятия «круг» и «окружность». У окружности нет и не может быть площади, у нее есть только длина.

    Чтобы найти периметр круга, следует вычислить длину его окружности. Существует формула для нахождения длины окружности:

    L = 2πr

    L= 2πd

    L – длина окружности

    π – это число «пи», математическая константа. Она равна отношению длины окружности к длине ее диаметра. Древнее название числа «пи» – лудольфово число. Это число иррационально, его десятичное представление после точки никогда не заканчивается.

    π = 3.141 592 653 589 793 238 462 643 383 279 502

    Для удобства вычислений обычно используют значение 3.14

    Пи

    R – это радиус окружности

    D – Диаметр окружности

    Итак, чтобы определить периметр круга, надо найти произведение радиуса и 2π. Если в задаче указан диаметр, то

    Например, перед нами круг с радиусом 3 см. Найдем его периметр.

    Круг

    Отличие периметра от площади

    Площадь – это размер поверхности фигуры, а периметр – это сумма ее границ.

    Площадь всегда измеряется в квадратных единицах (см 2 , м 2 , мм 2 ). Периметр измеряется в единицах длины – в сантиметрах, миллиметрах, метрах, дециметрах.

    Заключение

    Современный онлайн калькулятор позволяет ввести значения сторон и задать необходимую точность вычислений, мгновенно производя расчёт и выдавая необходимый результат.

    По диагонали и углу между диагоналями

    Диагонали прямоугольника всегда равны.

    1. Найти квадрат диагонали (умножить диагональ на саму себя).
    2. Найти половину этого квадрата – умножить его на 0,5.
    3. Найти синус угла между диагоналями.
    4. Умножить половину квадрата диагонали на синус угла между диагоналями.

    Ищем площадь по диагонали и углу

    Пример. Найдите площадь прямоугольника, диагональ которого равна 10 см, а угол между диагоналями – 30 градусов.

    1. Квадрат диагонали: 10*10 = 100 см.
    2. Половина этого квадрата: 0,5*100 = 50 см.
    3. Синус угла между диагоналями: sin 30 градусов = 0,5.
    4. Перемножаю половину квадрата и синус угла, чтобы найти площадь: 50*0,5 = 25 см.

    Вот еще вам таблица основных значений из тригонометрии. Там как раз отмечено, что синус 30 градусов всегда равен 0,5 (1/2).

    Основные значения из тригонометрии

    По радиусу описанной окружности и углу между диагоналями – первый способ

    Радиус описанной окружности равен половине ее диаметра, а диаметр равен диагонали прямоугольника. Надо найти диаметр и посчитать площадь по формуле выше.

    Пример. Найдите площадь прямоугольника, если радиус описанной окружности равен 6 см, а угол между диагоналями – 30 градусов.

    1. Находим длину диагонали: 6*2 =12 см.
    2. Квадрат диагонали равен 144 см.
    3. Половина квадрата: 72 см.
    4. Синус 30 градусов равен 0,5.
    5. Умножаем половину квадрата на синус: 72*0,5 = 36 см.
Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий