Каков принцип действия асинхронного двигателя

Содержание

Однофазный асинхронный электродвигатель — устройство, принцип работы

Практически всем хорошо известны трехфазные электродвигатели, они широко применяются в промышленности, позволяют решать самые различные задачи. Да и принцип получения переменного тока, как физической величины мы привыкли рассматривать на примере тех же трехфазных асинхронных генераторов. Но как быть в бытовых условиях, где присутствует только одна фаза, народные умельцы научились выполнять подключение трехфазных электрических машин, но это не обязательно. На практике давно используется однофазный асинхронный электродвигатель, который может выполнять все свои функции даже в домашней сети переменного тока.

Устройство электродвигателя переменного тока

Электрические двигатели – это силовые машины, применяющиеся для превращения электрической энергии в механическую. Общая классификация разделяет их по типу питающего тока на двигатели постоянного и переменного тока. В статье ниже рассматриваются электрические двигатели со спецификацией под переменный ток, их виды, отличительные характеристики и преимущества.

Для общей информации, рекомендуем прочитать нашу отдельную статью о принципах работы электродвигателей.

Электродвигатель переменного тока

Асинхронный двигатель с короткозамкнутым ротором

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Электродвигатели

В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии, то есть работает в режиме электрического генератора.

По виду создаваемого механического движения электродвигатели бывают вращающиеся, линейные и др. Под электродвигателем чаще всего подразумевается вращающий электродвигатель, так как он получил наибольшее применение.

Областью науки и техники изучающей электрические машины является – электромеханика. Принято считать, что ее история начинается с 1821 года, когда был создан первый электродвигатель М.Фарадея.

Асинхронный электродвигатель: устройство, принцип работы, виды

Одним из наиболее распространенных типов электрических машин в мире является асинхронный электродвигатель. За счет высокой надежности и неприхотливости в работе такие агрегаты получили широкое распространение в самых различных отраслях промышленности и сельского хозяйства, они помогают решать бытовые и общепроизводственные задачи любой сложности. Поэтому в данной статье мы детально рассмотрим особенности асинхронных двигателей.

Устройство, виды и принцип действия асинхронных электродвигателей

Наука в области электричества в XIX и XX веках стремительно развивалась, что привело к созданию электрических асинхронных двигателей. С помощью таких устройств развитие промышленной индустрии шагнуло далеко вперед и теперь невозможно представить заводы и фабрики без силовых машин с использованием асинхронных электродвигателей.

Устройство, виды и принцип действия асинхронных электродвигателей

Как устроен асинхронный двигатель

Первая главная деталь в электромоторе называется статором, вторая – ротором. Статор сделан в форме цилиндра из крепкого листа нержавеющей стали. Внутри сердечника статора установлены обмотки из специальных проводов. Оси проводов укладываются под углом в 120°. Для работы на разных электросетях концы кабелей скрепляются в виде треугольника или звезды.

Роторы в асинхронном двигателе подразделяются на 2 типа:

  1. Короткозамкнутый. Он является сердечником, в который заливается раскаленный металл. После этого в нем появляются железные стержни, замыкающиеся маленькими торцевыми колечками. Подобная схема конструкции именуется “беличьей клеткой”. В устройствах с высокой мощностью алюминий заменяется на медь.
  2. С фазами. Мотор имеет толстую трехфазную обмотку, которая почти не отличается от обмотки статора. В основном концы проводов скрепляются в форме звезды, а затем дополнительно закрепляются колечками. Используя щетку, которая подсоединена к обручам, к цепи можно подключить дополнительный резистор. Последний необходим для того, чтобы человек мог контролировать переменное сопротивление в фазе ротора.

Принцип преобразования энергии

Среди электрических двигателей, применяемых во всех отраслях промышленности и бытовых электроприборах, наибольшее распространение имеют двигатели переменного тока. Они встречаются практически в каждой сфере жизнедеятельности – от детских игрушек и стиральных машин до автомобилей и мощных производственных станков.

Принцип работы всех электрических двигателей основывается на законе электромагнитной индукции Фарадея и законе Ампера. Первый из них описывает ситуацию, когда на замкнутом проводнике, находящемся в изменяющемся магнитном поле, генерируется электродвижущая сила. В двигателях это поле создается через обмотки статора, по которым протекает переменный ток. Внутри статора (представляющего собой корпус устройства) находится подвижный элемент двигателя – ротор. На нем и возникает ток.

Вращение ротора объясняется законом Ампера, который утверждает, что на электрические заряды, протекающие по проводнику, находящемуся внутри магнитного поля, действует сила, движущая их в плоскости, перпендикулярной силовым линиям этого поля. Проще говоря, проводник, которым в конструкции двигателя является ротор, начинает вращаться вокруг своей оси, а закрепляется он на валу, к которому подключаются рабочие механизмы оборудования.

Конструкция электродвигателя

Основными компонентами вращающегося электродвигателя являются статор и ротор. Статор – неподвижная часть, ротор – вращающаяся часть.

Стандартная конструкция вращающегося электродвигателя

У большей части электродвигателей ротор располагается внутри статора. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Устройство

Конструктивно простейшая асинхронная машина представляет собой рамку, вращающуюся в переменном магнитном поле. Однако на практике данная модель носит скорее ознакомительный характер и практического применения в промышленности не имеет. Поэтому на рисунке 1 ниже мы рассмотрим устройство действующей модели асинхронного электродвигателя.

Устройство асинхронного электродвигателя

Рис. 1. Устройство асинхронного электродвигателя

Весь двигатель располагается в корпусе станины 7, ее основная задача состоит в обеспечении достаточной механической прочности, способной выдерживать достаточные усилия. Поэтому чем выше мощность агрегата, тем большей прочностью должна обладать станина и корпус.

Внутрь корпуса устанавливается сердечник статора 3, выступающий в роли магнитного проводника для силовых линий рабочего поля. С целью уменьшения потерь в стали магнитопровод выполняется наборным из шихтованных листов, однако в ряде моделей применяется и монолитный вариант.

В пазы сердечника статора укладывается обмотка 2, предназначенная для пропуска электрического тока и формирования ЭДС. Число обмоток будет зависеть от количества пар полюсов на каждую фазу. Также в части уложенных обмоток электродвигатели подразделяются на:

  • трехфазные;
  • двухфазные;
  • однофазные.

Внутри статора располагается подвижный элемент – ротор 6. По конструкции ротор может быть короткозамкнутым или фазным, на рисунке приведен первый вариант. В состав ротора входит сердечник 5, также набранный из шихтованной стали и беличья клетка 4. Вся конструкция насажена на металлический вал 1, передающий вращение и механическое усилие.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

dvigatel asinkhronnyy trekhfaznyy

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

korotkozamknutyy rotor

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Конструктивные особенности

Если сравнивать однофазный электродвигатель с другими электрическими машинами, то конструктивно он также состоит из подвижного и неподвижного элемента — статора и ротора. Статор, за счет протекания электрического тока по его обмоткам, создает магнитное поле, вступающее во взаимодействие с ротором. В результате электромагнитного взаимодействия ротор приводится во вращение.

Конструкция однофазного асинхронного электродвигателя

Рис. 1. Конструкция однофазного асинхронного электродвигателя

Однако все не так просто, как может показаться на первый взгляд, если бы вы убрали из обычного трехфазного электродвигателя лишние две обмотки и подключили в розетку, вращение бы не началось. Мотору попросту не хватит момента для вращения ротора. Поэтому конструкция однофазного асинхронного электродвигателя имеет ряд особенностей.

Ротор

Ротор однофазного электродвигателя представляет собой такой же металлический вал, который оснащается обмоткой. На валу собирается ферромагнитный каркас из шихтованной стали по ее внешней поверхности проделываются пазы. В пазах на валу ротора устанавливаются стержни из меди или алюминия, которые выступают в роли обмотки, проводящей электрический ток. На концах стержни соединяются двумя кольцами, из-за такой конструкции его также называют беличьей клеткой.

При воздействии электромагнитного потока от статора на короткозамкнутые обмотки ротора в беличьей клетке начинает протекать ток. Ферромагнитная вставка на валу помогает усилить поток, проходящий через него. Однако далеко не во всех моделях существует магнитный проводник, в некоторых он выполняется из немагнитных сплавов.

Статор

Конструкция статора в однофазном электродвигателе имеет такой же состав, как и в большинстве электрических машин:

  • металлический корпус;
  • установленный внутри магнитопровод из ферромагнитного материала;
  • обмотка статора, представленная медными проводниками.

Обмотки статора такого электродвигателя подразделяются на две – основную, она же рабочая, через которую осуществляется постоянная циркуляция нагрузки и пусковая, которая задействуется только в момент запуска. Обе обмотки однофазного двигателя расположены под углом 90° друг относительно друга. Такая конструкция делает их схожими с двухфазными электродвигателями, где также применяются две обмотки.

Но их объем, относительно всего пространства асинхронного двигателя отличается, основная составляет только 2/3 от общего числа пазов, а пусковые обмотки занимают 1/3.

Принцип работы электродвигателя

Принцип работы двигателя

Принцип работы электродвигателя

Принцип действия электродвигателя

Принцип работы двигателя

    Подробное описание принципа работы электродвигателей разных типов:

Трехфазный асинхронный двигатель. Принцип работы

Принцип действия асинхронного двигателя заключается во взаимном расположении обмоток и трехфазном напряжении, что приводит к возникновению вращающегося магнитного поля, которое и выступает движущей силой.

Подробнее говоря, при подаче питания на первичную обмотку, на фазах образуются три магнитных потока, изменяющихся в зависимости от частоты входного напряжения. Они смещены между собой не только в пространстве, но и во времени, благодаря чему и появляется вращающийся магнитный поток.

Во время вращения результирующий поток создает ЭДС в роторных проводниках. По причине того, что обмотка ротора представляет собой замкнутую цепь, в ней создается ток, создающий пусковой момент в направлении вращения магнитного поля статора. Это приводит к вращению ротора после превышения пусковым моментом его тормозного момента. Наблюдаемое в этот момент явление называется скольжением — величиной, показывающей в виде процентов соотношение частоты вращения магнитного поля к частоте вращения ротора.
соотношение частоты вращения магнитного поля к частоте вращения ротора
(n1 – частота магнитного поля статора; n2 – частота вращения ротора)

Скольжение является очень важным параметром. На старте его величина всегда равна 1 и, естественно, становится меньше по мере увеличения разности между n1 и n2, что сопровождается также уменьшением электродвижущей силы и вращающего момента. Во время работы на холостом ходу скольжение минимально и растет по мере увеличения статического момента. Достигнув критического скольжения (обозначается как sкр), может спровоцировать опрокидывание двигателя. После уравновешивания тормозного и электромагнитного момента изменения величин прекращаются.

Таким образом, принцип действия асинхронного двигателя основывается на взаимодействии магнитного поля ротора, находящегося во вращении, и токов, наведенных в роторе этим же полем. При этом обязательным условием возникновения вращающего момента является разница частот вращения полей.

История изобретения

Изобретение простейшего способа преобразования энергии из электрической в механическую принадлежит Майклу Фарадею. В 1821 году этот великий английский ученый провел эксперимент с проводником, опущенным в сосуд с ртутью, на дне которого лежал постоянный магнит. После подачи электричества на проводник он приходил в движение, вращаясь соответственно силовым линиями магнитного поля. В наши дни этот опыт часто проводят на уроках физики, заменяя ртуть рассолом.

Дальнейшее изучение вопроса привело к созданию Питером Барлоу в 1824 году униполярного двигателя, названного колесом Барлоу. В его конструкцию входят два зубчатых колеса из меди, расположенных на одной оси между постоянными магнитами. После подачи тока на колеса, в результате его взаимодействия с магнитными полями, колеса начинают вращаться. Во время опытов ученый установил, что направление вращения можно изменить, поменяв полярность (перестановкой магнитов или контактов). Практического применения «колесо Барлоу», но сыграло важную роль в изучении взаимодействия магнитных полей и заряженных проводников.

Первый рабочий образец устройства, ставшего прародителем современных двигателей, был создан русским физиком Борисом Семеновичем Якоби в 1834 году. Принцип использования вращающегося ротора в магнитном поле, продемонстрированный в этом изобретении, практически в неизменном виде применяется современных двигателях постоянного тока.

А вот создание первого двигателя с асинхронным принципом работы принадлежит сразу двум ученым – Николе Тесла и Галилео Феррарис, по удачному стечению обстоятельств продемонстрировавшим свои изобретения в один год (1888). Через несколько лет двухфазный бесколлекторный двигатель переменного тока, созданный Николой Тесла уже использовался на нескольких электростанциях. В 1889 году русский электротехник Михаил Осипович Доливо-Добровольский усовершенствовал изобретение Теслы для работы в трехфазной сети, благодаря чему смог создать первый асинхронный двигатель переменного тока мощностью более 100 Вт. Ему же принадлежит изобретение используемых сегодня способов подключения фаз в трехфазных электродвигателях: «звезда» и «треугольник», пусковых реостатов и трехфазных трансформаторов.

Система переменного тока

Достоинства асинхронных электродвигателей

С короткозамкнутым ротором С фазным ротором
1. Простое устройство и схема запуска 1. Небольшой пусковой ток
2. Низкая цена изготовления 2. Возможность регулировать скорость вращения
3. С увеличением нагрузки скорость вала не меняется 3. Работа с небольшими перегрузками без изменения частоты вращения
4. Способен переносить перегрузки краткие по времени 4. Можно применять автоматический пуск
5. Надежен и долговечен в эксплуатации 5. Имеет большой вращающий момент
6. Подходит для любых условий работы
7. Имеет высокий коэффициент полезного действия

Отличие от синхронного двигателя

Наряду с простыми асинхронными электрическими машинами в промышленности также используются и синхронные агрегаты. Основным отличием синхронного двигателя является наличие вспомогательной обмотки на роторе, предназначенной для создания постоянного магнитного потока, что показано на рисунке 4 ниже.

Отличие асинхронного от синхронного электродвигателя

Рис. 4. Отличие асинхронного от синхронного электродвигателя

Эта обмотка создает магнитный поток, не зависящий от наличия электродвижущей силы в обмотках статора электродвигателя. Поэтому при возбуждении синхронного электродвигателя его вал начинает вращаться одновременно с полем статора. В отличии от асинхронного типа, где существует разница в движении, которая физически выражается как скольжение и рассчитывается по формуле:

где s – это величина скольжения, измеряемая в процентах, n1 – частота, с которой вращается поле статора, n2 – частота, с которой вращается ротор.

Синхронные электродвигатели применяются в тех устройствах, где важно соблюдать высокую точность синхронизации подачи питания и начала движения. Также они обеспечивают сохранение рабочих характеристик в момент пуска.

На практике существует огромное количество разновидностей асинхронных электродвигателей, отличающихся как сферой применения, так и мощностью согласно ГОСТ 12139-84 . В связи с тем, что все вариации перечислить невозможно, мы рассмотрим наиболее значимые критерии, по которым асинхронные аппараты разделяются на виды.

По количеству питающих фаз выделяют:

  • трехфазные – используются в сетях, где есть возможность подключиться сразу ко всем фазам, но в частных случаях могут запускаться и в однофазной сети;
  • двухфазные – применяются во многих бытовых приборах, состоят из двух рабочих обмоток, одна из которых питается напряжением сети, а вторая подключается через фазосдвигающий конденсатор.
  • однофазные – как и предыдущая модель содержат две обмотки, одна из которых рабочая, а вторая пусковая.

По типу ротора различают:

  • с короткозамкнутым ротором – имеет тяжелый пуск, но и меньшую стоимость;
  • с фазным ротором – на роторе устанавливается вспомогательная обмотка, делающая работу электродвигателя более плавной.

По способу подачи питания:

  • статорные – классические модели, в которых рабочие обмотки устанавливают на статор;
  • роторные – рабочие обмотки помещаются на вращающемся элементе, широкое применение на практике получили асинхронные двигатели Шраге-Рихтера.

Достоинства и недостатки асинхронных двигателей.

Основные достоинства асинхронного электродвигателя с короткозамкнутым ротором:

1. Очень простое устройство, что позволяет сократить затраты на его изготовление.

2. Цена намного меньше по сравнению с другими двигателями.

3. Очень простая схема запуска.

4. Скорость вращения вала практически не меняется с увеличением нагрузки.

5. Хорошо переносит кратковременные перегрузы.

6. Возможность подключения трёхфазных двигателей в однофазную сеть.

7. Надёжность и возможность эксплуатировать практически в любых условиях.

8. Имеет очень высокий показатель КПД и cos φ.

Недостатки:

1. Не возможности контролировать частоту вращения ротора без потери мощности.

2. Если увеличить нагрузку, то уменьшается момент.

3. Пусковой момент очень мал по сравнению с другими машинами.

4. При недогрузе увеличивается показатель cos φ

5. Высокие показатели пусковых токов.

Достоинства двигателей с фазным ротором:

1. По сравнению с короткозамкнутыми двигателями, имеет достаточно большой вращающий момент. Что позволяет его запускать под нагрузкой.

2. Может работать с небольшим перегрузом, и при этом частота вращения вала практически не меняется.

3. Небольшой пусковой ток.

4. Можно применять автоматические пусковые устройства.

Недостатки:

1. Большие габариты.

2. Показатели КПД и cos φ меньше, чем у двигателей с короткозамкнутым ротором. И при недогрузе эти показатели имеют минимальное значение

3. Нужно обслуживать щёточный механизм.

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

С уважением Александр!

Читайте также статьи:

Хочешь получать статьи этого блога на почту?

Очень все подробно написано, спасибо! Я всегда слабо разбирался в двигателях, но у Вас хорошее и понятное изложение.

Не мешало бы в статью добавить изобретателя электродвигателя великого английского ученого Майкла Фарадея. Ведь это именно он назвал электродвигатель преобразователем электрической энергии в механическую.

Кстати, Майкл Фарадей был химиком, а такие изобретения обычно присущи физикам.

В статье историю создания электродвигателя, я не затрагивал. Об этом может напишу позже, в отдельной статье.

Асинхронный двигатель изобрел русский ученый Доливо-Добровольский.

«Напряжение подаётся на статор и на ротор.»

Нет. Тут вы неправы. За это я и не люблю всяческих «блогеров». Пишут о том, в чем сами не разбираются.

Дмитрий, внимательно читайте статью. Там написано, что это в случае с фазным ротором. А я люблю таких комментаторов, которые приходят и начинают умничать и при этом совсем не понимают о чём идёт речь в статье.

Назначение и сфера применения АД

сфера применения

Без асинхронного двигателя не обходится большинство предприятий.

Электродвигатели, которые называются асинхронными, применяются почти во всех отраслях промышленности и сельского хозяйства. Они тратят около 70% электричества, которое предназначено для превращения мощности тока в поступательное движение. Работа асинхронного двигателя считается наиболее эффективной в качестве электрической тяги. Без подобных машин не обходится большинство предприятий.

У данных устройств есть несколько положительных сторон:

  1. Простая и недорогая конструкция, поэтому производство машин не отнимает много времени и средств.
  2. Низкие расходы по эксплуатации обеспечены отказом от скользящего узелка токосъема, что и повышает надежность мотора.
  3. Доступность. Они продаются почти во всех магазинах по невысокой цене.

Данный вид машин бывает трехфазным или однофазным в зависимости от числа питающих частей. Если соблюдать правила техники безопасности и настроить электросеть, то трехфазный мотор может работать на однофазной сети.

Асинхронные устройства используются не только на производстве, но и в быту. Однофазные двигатели устанавливаются в вентиляторы, стиральные машины, насосы для воды и небольшие электрические инструменты.

Подключение к однофазным и трехфазным источникам питания

По типу питающей сети электродвигатели переменного тока классифицируют на одно- и трехфазные.

Подключение асинхронных однофазных двигателей осуществляет очень легко – для этого достаточно подвести к двум выходам на корпусе фазный и нулевой провод однофазной 220В сети. Синхронные двигатели тоже можно запитывать от сети данного типа, однако подключение немного сложнее – необходимо соединить обмотки ротора и статора так, чтобы их контакты однополюсного намагничивания были расположены напротив друг друга.

Подключение к трехфазной сети представляется несколько более сложным. В первую очередь, следует обратить внимание, что клеммная коробка содержит 6 выводов – по паре на каждую из трех обмоток. Во-вторых, это дает возможность использовать один из двух способов подключения («звезда» и «треугольник»). Неправильное подключение может привести в поломке двигатель от расплавления обмоток статора.

Главное функциональное отличие «звезды» и «треугольника» заключается в различном потреблении мощности, что сделано для возможности включения машины в трехфазные сети с различным линейным напряжением — 380В или 660В. В первом случае следует соединять обмотки по схеме «треугольник», а во втором – «звездой». Такое правило включения позволяет в обоих случаях иметь напряжение 380В на обмотках каждой фазы.

На панели подключения выводы обмоток располагаются таким образом, чтобы перемычки, используемых для включения, не перекрещивались между собой. Если коробка выводов двигателя содержит только три зажима, значит, он рассчитан для работы от одного напряжения, которое указано в технической документации, а обмотки соединены между собой внутри устройства.

Способы пуска и схемы подключения

Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

  • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
  • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
  • понижение напряжения;
  • плавный пуск;
  • изменение частоты питающего напряжения.

Однофазного асинхронного двигателя.

Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

  • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.
  • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
  • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.

Трехфазного асинхронного двигателя.

Способы пуска трехфазного электродвигателя

Трехфазные асинхронные агрегаты могут подключаться такими способами:

  • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
  • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
  • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

Прямая схема без возможности реверсирования

Рис. 9: прямая схема без возможности реверсирования

Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

Схема прямого включения с реверсом

Рисунок 10: схема прямого включения с реверсом

Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

Основные технические характеристики

В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.

В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:

Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).

Ток при максимальном напряжении – от 0,55 А до 5А.

КПД от 66% до 83%.

Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.

Технические характеристики конкретного двигателя указаны в его паспорте.

Схемы подключения

Провода трехфазного двигателя подключаются либо по схеме треугольника, либо по звезде. При этом для последнего напряжение должно быть выше. Также перед установкой обмотки нужно определить момент на валу в моторе. Стоит обратить внимание на тот момент, что АДКР, подсоединенный различными методами к одной и той же цепи, требует разной мощности. Поэтому нельзя подключать двигатель, в котором предполагается использование только схемы треугольника, с принципом треугольника.

Иногда с целью снижения пускового тока люди коммутируют на этапе пуска контакты звезды в треугольник, но в таком случае падает и пусковой момент.

А для подсоединения трехфазного мотора к однофазной электросети профессионалы применяют разные фазосдвигающие детали, например конденсатор и резистор.

Специальные электродвигатели

Серводвигатель

Подключение

Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

Схемы включения понятны из рисунка 4.

Схемы подключения

Рис. 4. Схемы подключения

Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

Рис. 5. Примеры схем подключений в однофазную сеть

С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

Применение

На сегодняшний день электродвигатели со спецификацией на переменный ток распространены во всех сферах промышленности и жизнедеятельности. На электростанциях они устанавливаются в качестве генераторов, используются в производственном оборудовании, автомобилестроении и даже бытовой технике. Сегодня в каждом доме можно встретить как минимум одно устройство с электрическим двигателем переменного тока, например, стиральную машину. Причины столь большой популярности заключаются в универсальности, долговечности и легкости обслуживания.

Среди асинхронных электрических машин наибольшее распространение получили устройства с трехфазной спецификацией. Они являются наилучшим вариантом для использования во многих силовых агрегатах, генераторах и высокомощных установках, работа которых связана с необходимостью контроля скорости вращения вала.

Функциональные и эксплуатационные особенности

Характерные преимущества асинхронных двигателей:

  • В их конструкции нет коллекторных групп, которые увеличивают износ других видов двигателей за счет дополнительного трения.
  • Питание асинхронных электрических машин не требует использования преобразователей и может осуществляться промышленной трехфазной сети.
  • Из-за меньшего количества деталей и конструктивных элементов они относительно легко обслуживаются и имеют большой срок службы.

Среди недостатков можно отметить:

  • Сфера применения асинхронных двигателей несколько ограничена из-за малого пускового момента.
  • Высокая реактивная мощность, которую они потребляют во время работы, не оказывает влияние на механическую мощность.
  • Большие пусковые токи, потребляемые на пуске этих двигателей, могут превышать допустимые значения некоторых систем.

Преимущества и недостатки

К преимуществам асинхронных электродвигателей, в сравнении с другими типами электрических машин следует отнести:

  • Относительно меньшая стоимость, в сравнении с другими типами электродвигателей, за счет простоты конструкции;
  • Высокая степень надежности, благодаря отсутствию вспомогательных элементов редко выходят со строя;
  • Способны выносить кратковременные перегрузки;
  • Могут включаться в цепь напрямую без использования дополнительного оборудования;
  • Низкие затраты на содержание в ходе эксплуатации.

Основными недостатками асинхронного электродвигателя являются относительно большие пусковые токи и слабый пусковой момент, что в определенной степени ограничивает сферу прямого включения. Также асинхронные электродвигатели обладают низким коэффициентом мощности и сильно зависят от параметров питающего напряжения.

Сравнение характеристик внешне коммутируемых электрических двигателей

Ниже представлены сравнительные характеристики внешне коммутируемых электродвигателей, в ракурсе применения в качестве тяговых электродвигателей в транспортных средствах.

Как производятся расчеты

Для того чтобы вычислить частоту вращения двигателя следует воспользоваться определенной нам ранее формулой скольжения:

формула скольжения

И выразить из нее скорость вращения ротора:

скорость вращения ротора

В качестве примера возьмем двигатель модели АИР71А4У2 мощностью в 550 Вт с 4 парами полюсов и частотой вращения ротора 1360 об/мин.

При питании от сети с частотой 50 Гц статор будет вращаться со скоростью:

скорость вращения

Таким образом, величина скольжения электродвигателя составляет:

 величина скольжения электродвигателя составляет

И, наконец, прекрасное, хотя и устаревшее, видео рекомендуемое всем для одноразового просмотра.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий